229 research outputs found

    Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    Get PDF
    Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter

    Visibility of dichalcogenide nanolayers

    Get PDF
    Dichalcogenides with the common formula MX2 are layered materials with electrical properties that range from semiconducting to superconducting. Here, we describe optimal imaging conditions for optical detection of ultrathin, two-dimensional dichalcogenide nanocrystals containing single, double and triple layers of MoS2, WSe2 and NbSe2. A simple optical model is used to calculate the contrast for nanolayers deposited on wafers with varying thickness of SiO2. The model is extended for imaging using the green channel of a video camera. Using AFM and optical imaging we confirm that single layers of MoS2, WSe2 and NbSe2 can be detected on 90nm and 270 nm SiO2 using optical means. By measuring contrast under broad-band green illumination we are also able to distinguish between nanostructures containing single, mono and triple layers of MoS2, WSe2 and NbSe2

    8-Bromo-1,3-diphenyl-2,3-dihydro-1H-naphtho­[1,2-e][1,3]oxazine

    Get PDF
    The title compound, C24H18BrNO, consists of an envelope-configured oxazine ring with a fused 8-bromo-1,3-diphenyl group and two bonded phenyl rings. The dihedral angles between the mean planes of the 8-bromo-1,3-diphenyl and the phenyl rings are 54.5 (6) and 87.4 (8)°, respectively. The oxazine is essentially coplanar with the 8-bromo-1,3-diphenyl [dihedral angle = 9.4 (1)°]. Weak C—H⋯π inter­actions contribute to the crystal packing

    Detecting the translocation of DNA through a nanopore using graphene nanoribbons

    Get PDF
    Solid-state nanopores can act as single-molecule sensors and could potentially be used to rapidly sequence DNA molecules. However, nanopores are typically fabricated in insulating membranes that are as thick as 15 bases, which makes it difficult for the devices to read individual bases. Graphene is only 0.335 nm thick (equivalent to the spacing between two bases in a DNA chain) and could therefore provide a suitable membrane for sequencing applications. Here, we show that a solid-state nanopore can be integrated with a graphene nanoribbon transistor to create a sensor for DNA translocation. As DNA molecules move through the pore, the device can simultaneously measure drops in ionic current and changes in local voltage in the transistor, which can both be used to detect the molecules. We examine the correlation between these two signals and use the ionic current measurements as a real-time control of the graphene-based sensing device

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    PV cohomology of pinwheel tilings, their integer group of coinvariants and gap-labelling

    Get PDF
    In this paper, we first remind how we can see the "hull" of the pinwheel tiling as an inverse limit of simplicial complexes (Anderson and Putnam) and we then adapt the PV cohomology introduced in a paper of Bellissard and Savinien to define it for pinwheel tilings. We then prove that this cohomology is isomorphic to the integer \v{C}ech cohomology of the quotient of the hull by S1S^1 which let us prove that the top integer \v{C}ech cohomology of the hull is in fact the integer group of coinvariants on some transversal of the hull. The gap-labelling for pinwheel tilings is then proved and we end this article by an explicit computation of this gap-labelling, showing that \mu^t \big(C(\Xi,\ZZ) \big) = \dfrac{1}{264} \ZZ [\dfrac{1}{5}].Comment: Problems of compilation by arxiv for figures on p.6 and p.7. I have only changed these figure

    PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis

    Get PDF
    BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. METHODOLOGY/PRINCIPAL FINDINGS: We studied the effects of MPs obtained from wild type (MPs(PPARalpha+/+)) and knock-out (MPs(PPARalpha-/-)) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPs(PPARalpha+/+) or MPs(PPARalpha-/-) obtained from blood of mice. Only MPs(PPARalpha+/+) harboring PPAR(alpha) significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPs(PPARalpha+/+) displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPs(PPARalpha+/+) increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPs(PPARalpha+/+) were mediated by NF-kappaB-dependent mechanisms. CONCLUSIONS/SIGNIFICANCE: Our results underscore the obligatory role of PPARalpha carried by MPs for EPC differentiation and angiogenesis. PPARalpha-NF-kappaB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization
    corecore